Stability Analysis of an SIR epidemic system (COVID-19)

Josephine Wairimu

PhD, Mathematical Modeling University of Nairobi, Kenya

University of Nairobi, Kenya

July 13, 2023

イロト イポト イヨト イヨ

1/18

Layout

Background;

- Mathematical model of SIR epidemic system (COVID-19), Rubbayyi
- The incidence and the recovery rate

Positivity of systems solutions

Basic Properties of the Model: Theorem

The Basic Reproduction Number

The Equilibrium Points

Stability Analysis

References

- ・ロト ・回ト ・ヨト ・ヨト ・ヨー のへぐ

2/18

Abstract

- The aim is to study and analyze the susceptible-infectious-removed (SIR) dynamics considering the effect of health system
- The model consider a general incidence rate function and the recovery rate as functions of the number of hospital beds
- In most studies the authors assume that the recovery rate is a constant. However, in reality the recovery rate depends on time of recovering process such as the health system, including the number of hospital beds and medicines.
- The main focus of this study is analyzing the basic properties of model and demonstrating the stability properties of the model.e.

The incidence rate

- The incidence rate function f(I)S describes the mechanism of disease transmission, i.e., the rate at which susceptible become infectious
- A non linear incidence give a reasonable qualitative description of the disease dynamics
- When the 'psychological' effect is taken into the account of the infection force f(I), it is non-monotone
- This suggests that the infection force may increase when the number of infective individuals I is small while it decreases as large I increases
- For a very large number of infectives the infection force may decrease, as the number of infective individuals increases
- This may be due to the reduced number of contacts per unit time in the presence of large number of infective(Perceived fear)

• The nonlinear incidence rate is generalized by the function

$$f(S,I)=\frac{\beta_1 SI}{a_1+a_2 S+a_3 I},$$

- where the parameter a_1, a_2 and a_3 are constants
- β is the probability of transmission per contact per unit time
- *a*₃ measures the psychological or inhibitory effect
- The fraction $\frac{1}{a_1+a_2S+a_3I}$ measures the inhibition effect from the behavioral changes of the susceptible individuals when their number increases or from the crowding effect of the infective individuals

The Recovery rate

- The recovery rate α or the exit rate is taken as a constant in many models, in practice it depends on the time of recovering process
- It can be related to the total infectious individuals seeking treatment
- In this model, the impact of available resources of health system to the public, in particular the number of the hospital beds is incorporated.
- The recovery rate is a function of both the hospital bed-population ratio $b_1 > 0$ and the infected *I*.
- The hospital bed-population ratio (HBPR)- number of available hospital beds per 10,000 population used for estimating resource availability to the public(WHO).
- on the other hand recovery depends on the number of the infectious individuals *I*, so α is a function of b₁ and *I*, ie α(b₁, *I*)

▲ 伊 ト ▲ 三 ト

The Recovery rate

• The recovery rate α is given by;

$$\alpha(I) = \alpha_0 + \frac{(\alpha_1 - \alpha_0)b_1}{I + b_1},$$

- α₁ is the maximum per capita recovery rate due to the sufficient health care resource and few infectious individuals as well as the inherent property of a specific disease.
- α₀ is the minimum per capita recoveryrate due to the function of basic clinical resources.
- The medium recovery rate can be achieved when $I = b_1$, so the parameter b_1 , ie the number of hospital beds plays an important role in controlling the spread of infectious diseases.
- That is the half saturation effect, $\frac{1}{2}\alpha_1$.

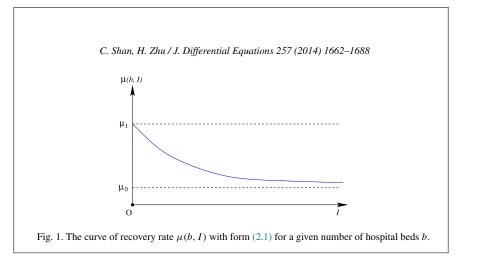


Figure: Hospital Bed Population Ratio Effect

(日)

Model Differential Equations

Thus the system of differential equations is given by

$$\dot{S} = (1 - p)b - \mu_1 S - f(S, I) + \gamma R,$$

$$\dot{I} = f(S, I) - (\mu_2 + \alpha(I))I,$$

$$\dot{R} = pb - (\mu_3 + \gamma)R + \alpha I,$$

(1)

- *b* represents the number of new borns in the population
- *p* represents immunized new borns thru vaccination (1-p) is the non vaccinate proportion of the new borns called vaccine efficacy) a fraction of newborn children, designated as p
- I(t) is the infected population
- R(t) is the recovered population, so that N = S + I + R.
- All the parameters are assumed to be positive

SIR epidemic system (COVID-19)

Basic Properties of the Model: Positivity

Under nonnegative conditions, the model solutions are positive. If S = 0 for all $t \ge 0$, then

$$dS/dt = (1 - p)b + \gamma R \ge 0$$

If S = N, then, I = 0 and R = 0

$$dS/dt = (1-p)b - \mu_1 N, \implies N* \leq rac{(1-p)b}{\mu_1}$$

- Therefore the susceptible population will remain in the positive othant bounded by 0 and N*
- This ensures that at any time the solution reaches the axis, its derivative increases, and the function S(t) does not cross to negative part
- With can similarly prove that the I(t) and R(t) will remain positive for all time $t \ge 0$
- Thus, for any positive initial conditions, all equation solutions are positive.

Under nonnegative conditions, the model solutions are positive.

Theorem

Let (S(t),I(t),R(t)) be the solution of system of equations with initial conditions (S_0, I_0, R_0) , and let $\mu = min(\mu_1, \mu_2, \mu_3)$. The compact set

$$\Omega = \{S(t), I(t), R(t) \in R_3^+, N(t) \le rac{b}{\mu} \ (2)$$

is positively invariant and attracts all solutions in \mathbb{R}^+_3 .

Let N(t) = S(t) + I(t) + R(t). Then from the system (2) we have

$$\frac{dN}{dt} \leq b - \min(\mu_1, \mu_2, \mu_3)N = b - \mu)N.$$

This implies that

$$\frac{dN}{dt} + \mu N \le b.$$

Using the method of integrating factors, we can solve and obtain the bounded region of the solution as

$$0 < N \leq \frac{b}{\mu} + (N_0 - \frac{b}{\mu})e^{-\mu t}$$

where N_0 is the initial condition. Thus 0 < N(t) < b, as t reaches infinity, and hence Ω is a positively invariant and attractive set.

The Basic Reproduction Number

- Intuitively is the expected number of secondary infection cases caused by a single typical infective case during his entire period of infectivity in a wholly susceptible population.
- The basic reproduction number is a dimensionless quantity denoted by R₀ and computed using the NGM as R₀ = ρ(FV⁻¹).
- The effective reproduction number, or actual number of secondary infections per infectious person at any time, often denoted by *R_E*

$$\mathcal{R}_{E} = \frac{(\gamma_{1} + \mu_{3}(1-p))b\beta_{1}}{a_{2}(\gamma_{1} + \mu_{3}[1-p])(\alpha_{1} + \mu - 2)b + a_{1}\mu_{1}(\mu_{3} + \gamma_{1})(\alpha_{1} + \mu_{2})}$$

• The infected compartments of Model (1) is *I*. An equilibrium solution with I = 0 has the form $E_0 = (S^0, 0, R^0)$, hence

$$F = \left[\frac{\partial \mathcal{F}_i}{\partial t}\right], \ V = \left[\frac{\partial \mathcal{V}_i}{\partial t}\right]$$

• where \mathcal{F} , are the new infection and \mathcal{V} are all the other movements in the compartment.

Josephine Wairimu (2023): UON

SIR epidemic system (COVID-19)

Equlibria

- Equating the left hand side of the model equations and solving the resulting simultaneous equations gives the solution set.
- The model has a DFE,

$$\mathsf{E}_0(S,I,R) = \left(\frac{b(\gamma_1 + \mu_3[1-p])}{\mu_1(\mu_3 + \gamma_1)}, 0, \frac{pb}{(\mu_3 + \gamma_1)}\right)$$

The endemic equilibrium E₁ = (S*, I*, R*) can be computed when I ≠ 0, and may give more than one set of solutions due to the high order resulting polynomial in I.

Local Stability of the Disease Free equibbrium

• The Jacobian matrix of system 1 at E_0 is given by

$$J(E_0) = \begin{pmatrix} -\mu_1 & j_{12} & \gamma_1 \\ 0 & j_{22} & 0 \\ 0 & \alpha_1 & -[\mu_3 + \gamma_1] \end{pmatrix}$$

• The Eigen values of this matrix is given by

$$J(E_0) = \begin{pmatrix} -\mu_1 \\ -[\mu_3 + \gamma_1] \\ j_{22} \end{pmatrix}$$

Local Stability of the Disease Free equlibrium

- With some calculation we can show that $J_{22} = \mathcal{R}_0 1$.
- Therefore all the eigenvalues have negative real parts.
- So we have the following result.

Lemma

The free steady-state solution E_0 is locally asymptotically stable if $\mathcal{R}_0 < 1$ and is unstable if $\mathcal{R}_0 > 1$.

Local Stability of the Endemic equlibrium

• The Jacobian matrix of system 1 at E_1 is given by

$$J(E_1) = \begin{pmatrix} -j_{11} & j_{12} & \gamma_1 \\ j_{21} & -j_{22} & 0 \\ 0 & j_{32} & -[\mu_3 + \gamma_1] \end{pmatrix}$$

- The characteristics equation of J(E1) is $\lambda^3 + B_1\lambda^2 + B_2\lambda + B_3$ Using the Routh-Hurtwiz Criterion we can show that E_1 is locally asymptotically stable when $B_1 > 0$, $B_3 > 0$, and $B_1B_2B_3 > 0$. Theses conditions are satisfied under some stated conditions.
- Global stability of *E*₀ and *E*₁ can be shown by finding a suitable Lyapunov function.

References

- Cory M. Simon: The SIR dynamic model of infectious disease transmission and its analogy with chemical kinetics Cory M. Simon 2020
- Fred Brauer: Mathematicalepidemiology:Past, present, and future. Infectious Disease Modelling, 2(2):113-127, 2017
- Herbert W Hethcote. The mathematics of infectious diseases. SIAM Review 42(4):599-653, 2000
- William Ogilvy Kermack and Anderson G McKendrick. Acontribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 15(772)700-721, 1927
- James D Murray. Epidemic models and the dynamics of infectious diseases. In Mathematical Biology, pages610-650. Springer, 1993
- Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29-48 (2002)