
Stability Analysis of an SIR epidemic system
(COVID-19)

Josephine Wairimu
PhD, Mathematical Modeling
University of Nairobi, Kenya

University of Nairobi, Kenya

July 13, 2023

Josephine Wairimu (2023): UON SIR epidemic system (COVID-19) July 13, 2023 1 / 18



Layout

1 Background;
Mathematical model of SIR epidemic system (COVID-19), Rubbayyi
The incidence and the recovery rate

2 Positivity of systems solutions

3 Basic Properties of the Model: Theorem

4 The Basic Reproduction Number

5 The Equilibrium Points

6 Stability Analysis

7 References

Josephine Wairimu (2023): UON SIR epidemic system (COVID-19) July 13, 2023 2 / 18



Abstract

The aim is to study and analyze the susceptible-infectious-removed
(SIR) dynamics considering the e↵ect of health system

The model consider a general incidence rate function and the recovery
rate as functions of the number of hospital beds

In most studies the authors assume that the recovery rate is a
constant. However, in reality the recovery rate depends on time of
recovering process such as the health system, including the number of
hospital beds and medicines.

The main focus of this study is analyzing the basic properties of
model and demonstrating the stability properties of the model.e.
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The incidence rate

The incidence rate function f(I)S describes the mechanism of disease
transmission, i.e., the rate at which susceptible become infectious

A non linear incidence give a reasonable qualitative description of the
disease dynamics

When the ’psychological’ e↵ect is taken into the account of the
infection force f(I), it is non-monotone

This suggests that the infection force may increase when the number
of infective individuals I is small while it decreases as large I increases

For a very large number of infectives the infection force may decrease,
as the number of infective individuals increases

This may be due to the reduced number of contacts per unit time in
the presence of large number of infective(Perceived fear)
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The incidence rate

The nonlinear incidence rate is generalized by the function

f (S , I ) =
�1SI

a1 + a2S + a3I
,

where the parameter a1, a2 and a3 are constants

� is the probability of transmission per contact per unit time

a3 measures the psychological or inhibitory e↵ect

The fraction 1
a1+a2S+a3I

measures the inhibition e↵ect from the
behavioral changes of the susceptible individuals when their number
increases or from the crowding e↵ect of the infective individuals
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The Recovery rate

The recovery rate ↵ or the exit rate is taken as a constant in many
models, in practice it depends on the time of recovering process

It can be related to the total infectious individuals seeking treatment

In this model, the impact of available resources of health system to
the public, in particular the number of the hospital beds is
incorporated.

The recovery rate is a function of both the hospital bed-population
ratio b1 > 0 and the infected I .

The hospital bed-population ratio (HBPR)- number of available
hospital beds per 10,000 population used for estimating resource
availability to the public(WHO).

on the other hand recovery depends on the number of the infectious
individuals I , so ↵ is a function of b1 and I , ie ↵(b1, I )
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The Recovery rate

The recovery rate ↵ is given by;

↵(I ) = ↵0 +
(↵1 � ↵0)b1

I + b1
,

↵1 is the maximum per capita recovery rate due to the su�cient
health care resource and few infectious individuals as well as the
inherent property of a specific disease.

↵0 is the minimum per capita recoveryrate due to the function of
basic clinical resources.

The medium recovery rate can be achieved when I = b1, so the
parameter b1, ie the number of hospital beds plays an important role
in controlling the spread of infectious diseases.

That is the half saturation e↵ect, 1
2↵1.
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Hospital Bed E↵ect

C. Shan, H. Zhu / J. Differential Equations 257 (2014) 1662–1688 1665

Fig. 1. The curve of recovery rate µ(b, I ) with form (2.1) for a given number of hospital beds b.

The data about the hospital bed-population ratio (HBPR) in different countries or regions is 
released annually in World Health Statistics annual reports by WHO [19].

Due to the significance of HBPR, as a preliminary study of this topic we will formulate the 
recovery rate µ incorporating the impact of the capacity and limit resources of the health care 
system in terms of HBPR denoted as the parameter b > 0. On the other hand, µ depends on the 
number of the infectious individuals I , so µ is a function of b and I . In general, for the per capita 
recovery rate µ(b, I ), we can assume

• µ(b, I ) > 0 for I ≥ 0, b > 0, and µ(b, 0) = µ1 > 0, where µ1 is the maximum per capita 
recovery rate due to the sufficient health care resource and few infectious individuals as well 
as the inherent property of a specific disease.

• ∂µ(b,I )
∂I < 0, limI→∞ µ(b, I ) = µ0 > 0 and limI→0 µ(b, I ) = µ(b, 0) = µ1. It is natural that 

µ(b, I ) is a decreasing function of I . Furthermore if the number of new infectious individu-
als becomes larger and larger, the available resources of the hospital cannot satisfy such large 
demand for treatment, yet it is still possible that a certain amount of infectious individuals 
can be treated and get recovered, and the minimum recovery rate can be sustained. There-
fore, we assume that limI→∞ µ(b, I ) = µ0. Here µ0 is the minimum per capita recovery 
rate due to the function of basic clinical resources.

• ∂µ(b,I )
∂b > 0, limb→∞ µ(b, I ) = µ1 and limb→0 µ(b, I ) = µ0. The per capita recovery rate is 

the increasing function of b, which is bounded by µ0 and µ1 for any b > 0.

Generally, according to the above assumption, one can use different functions to model the 
impact of hospital resource on the recovery rate, and we study it with a simple function

µ = µ(b, I ) = µ0 + (µ1 − µ0)
b

I + b
, (2.1)

as shown in Fig. 1. The medium recovery rate can be achieved when I = b, so the parameter b as 
a measure of available hospital resources, namely, the number of hospital beds plays an important 
role in controlling the spread of infectious diseases. Therefore we study the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= A − dS − βSI

S + I + R
,

dI

dt
= −(d + ν)I − µ(b, I )I + βSI

S + I + R
,

dR

dt
= µ(b, I )I − dR,

(2.2)

Figure: Hospital Bed Population Ratio E↵ect
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Model Di↵erential Equations

Thus the system of di↵erential equations is given by

Ṡ = (1� p)b � µ1S � f (S , I ) + �R ,

İ = f (S , I )� (µ2 + ↵(I ))I ,

Ṙ = pb � (µ3 + �)R + ↵I ,

(1)

b represents the number of new borns in the population

p represents immunized new borns thru vaccination (1-p) is the non
vaccinate proportion of the new borns called vaccine e�cacy) a
fraction of newborn children, designated as p

I (t) is the infected population

R(t) is the recovered population, so that N = S + I + R .

All the parameters are assumed to be positive
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Basic Properties of the Model: Positivity

Under nonnegative conditions, the model solutions are positive.
If S = 0 for all t � 0, then

dS/dt = (1� p)b + �R � 0

If S = N, then, I = 0 and R = 0

dS/dt = (1� p)b � µ1N, =) N⇤  (1� p)b

µ1

Therefore the susceptible population will remain in the positive othant
bounded by 0 and N*
This ensures that at any time the solution reaches the axis, its
derivative increases, and the function S(t) does not cross to negative
part
With can similarly prove that the I (t) and R(t) will remain positive
for all time t � 0
Thus, for any positive initial conditions, all equation solutions are
positive.
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Basic Properties of the Model: Theorem

Under nonnegative conditions, the model solutions are positive.

Theorem

Let (S(t),I (t),R(t)) be the solution of system of equations with initial

conditions (S0, I0,R0), and let µ = min(µ1, µ2, µ3). The compact set

⌦ = {S(t), I (t),R(t) 2 R

+
3 ,N(t)  b

µ
(2)

is positively invariant and attracts all solutions in R+
3 .
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Basic Properties of the Model: Proof of the Theorem

Let N(t) = S(t) + I (t) + R(t).Then from the system (2) we have

dN

dt

 b �min(µ1, µ2, µ3)N = b � µ)N.

This implies that
dN

dt

+ µN  b.

Using the method of integrating factors, we can solve and obtain the
bounded region of the solution as

0 < N  b

µ
+ (N0 �

b

µ
)e�µt

where N0 is the initial condition. Thus 0 < N(t) < b, as t reaches infinity,
and hence ⌦ is a positively invariant and attractive set.
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The Basic Reproduction Number

Intuitively is the expected number of secondary infection cases caused
by a single typical infective case during his entire period of infectivity
in a wholly susceptible population.
The basic reproduction number is a dimensionless quantity denoted
by R0 and computed using the NGM as R0 = ⇢(FV�1).
The e↵ective reproduction number, or actual number of secondary
infections per infectious person at any time, often denoted by RE

RE =
(�1 + µ3(1� p))b�1

a2(�1 + µ3[1� p])(↵1 + µ� 2)b + a1µ1(µ3 + �1)(↵1 + µ2)

The infected compartments of Model (1) is I . An equilibrium solution
withI = 0 has the form E0 = (S0, 0,R0), hence

F = [
@Fi

@t
], V = [

@Vi

@t
]

where F , are the new infection and V are all the other movements in
the compartment.

Josephine Wairimu (2023): UON SIR epidemic system (COVID-19) July 13, 2023 13 / 18



Equlibria

Equating the left hand side of the model equations and solving the
resulting simultaneous equations gives the solution set.

The model has a DFE,

E0(S , I ,R) =

✓
b(�1 + µ3[1� p])

µ1(µ3 + �1)
, 0,

pb

(µ3 + �1)

◆

The endemic equlibrium E1 = (S⇤, I ⇤,R⇤) can be computed when
I 6= 0, and may give more than one set of solutions due to the high
order resulting polynomial in I .
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Local Stability of the Disease Free equlibrium

The Jacobian matrix of system 1 at E0 is given by

J(E0) =

0

@
�µ1 j12 �1
0 j22 0
0 ↵1 �[µ3 + �1]

1

A

The Eigen values of this matrix is given by

J(E0) =

0

@
�µ1

�[µ3 + �1]
j22

1

A
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Local Stability of the Disease Free equlibrium

With some calculation we can show that J22 = R0 � 1.

Therefore all the eigenvalues have negative real parts.

So we have the following result.

Lemma
The free steady-state solution E0 is locally asymptotically stable if R0 < 1
and is unstable if R0 > 1.
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Local Stability of the Endemic equlibrium

The Jacobian matrix of system 1 at E1 is given by

J(E1) =

0

@
�j11 j12 �1
j21 �j22 0
0 j32 �[µ3 + �1]

1

A

The characteristics equation of J(E1) is �3 + B1�2 + B2�+ B3 Using
the Routh-Hurtwiz Criterion we can show that E1 is locally
asymptotically stable whenB1 > 0,B3 > 0, and B1B2B3 > 0. Theses
conditions are satisfied under some stated conditions.

Global stability of E0 and E1 can be shown by finding a suitable
Lyapunov function.

Josephine Wairimu (2023): UON SIR epidemic system (COVID-19) July 13, 2023 17 / 18



References

1 Cory M. Simon: The SIR dynamic model of infectious disease
transmission and its analogy with chemical kinetics Cory M. Simon
2020

2 Fred Brauer: Mathematicalepidemiology:Past, present,and future.
Infectious Disease Modelling, 2(2):113-127, 2017

3 Herbert W Hethcote.The mathematics of infectious diseases.SIAM
Review 42(4):599-653, 2000

4 William Ogilvy Kermack and Anderson G McKendrick. Acontribution
to the mathematical theory of epidemics. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences
15(772)700-721, 1927

5 James D Murray. Epidemic models and the dynamics of infectious
diseases. In Mathematical Biology, pages610-650. Springer, 1993

6 Driessche,P.,Watmough,J.:Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission.
Math. Biosci. 180, 29-48 (2002)

Josephine Wairimu (2023): UON SIR epidemic system (COVID-19) July 13, 2023 18 / 18


